Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Pharmaceutical Journal ; 306(7947), 2021.
Article in English | EMBASE | ID: covidwho-2252956
2.
Virus Genes ; 59(3): 479-483, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2241389

ABSTRACT

Highly pathogenic (HP) avian influenza A H7N9 virus has emerged in China since 2016. In recent years, it has been most prevalent in northern China. However, several strains of HP H7N9 reappeared in southwestern China (Yunnan Province) in 2021. As a result, we are wondering if these viruses have re-emerged in situ or been reintroduced. Here, we present phylogenetic evidence that the HP H7N9 viruses isolated in Yunnan emigrated from northern to southwestern China in 2020. The northern subregion of China has become a novel epicenter in HP H7N9 dissemination. Meanwhile, a cleavage motif re-emerged due to the T341I mutation, implying a parallel evolution. This cross-region transmission, which originated in non-adjacent provinces and traveled a great geographic distance in an unknown way, indicates that HP H7N9 dissemination did not halt in 2020, even under the shadow of the COVID-19 pandemic. Additional surveillance studies in poultry are required to determine the HP H7N9 virus's geographic distribution and spread.


Subject(s)
COVID-19 , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Influenza A Virus, H7N9 Subtype/genetics , Phylogeny , Pandemics , China/epidemiology , COVID-19/epidemiology
3.
Front Public Health ; 10: 1047362, 2022.
Article in English | MEDLINE | ID: covidwho-2224934

ABSTRACT

Objective: The outbreak of COVID-19 in 2020 is reminiscent of the H7N9 outbreak in 2013, which poses a huge threat to human health. We aim to compare clinical features and survival factors in fatal cases of COVID-19 and H7N9. Methods: Data on confirmed COVID-19 and H7N9 fatal cases identified in mainland China were analyzed to compare demographic characteristics and clinical severity. Survival curves were estimated by the Kaplan-Meier method and compared using log-rank tests and a restricted mean survival time model. A Cox regression model was used to identify survival factors in fatal cases of COVID-19 and H7N9. Results: Similar demographic characteristics were observed in fatal cases of COVID-19 and H7N9. The proportion of fatal cases of H7N9 receiving antibiotics, antiviral drugs, and oxygen treatment was higher than that of COVID-19. The potential protective factors for fatal COVID-19 cases were receiving antibiotics (HR: 0.37, 95% CI: 0.22-0.61), oxygen treatment (HR: 0.66, 95% CI: 0.44-0.99), and corticosteroids (HR: 0.46, 95% CI: 0.35-0.62). In contrast, antiviral drugs (HR: 0.21, 95% CI: 0.08-0.56) and corticosteroids (HR: 0.45, 95% CI: 0.29-0.69) were the protective factors for H7N9 fatal cases. Conclusion: The proportion of males, those having one or more underlying medical condition, and older age was high in COVID-19 and H7N9 fatal cases. Offering antibiotics, oxygen treatment, and corticosteroids to COVID-19 cases extended the survival time. Continued global surveillance remains an essential component of pandemic preparedness.


Subject(s)
COVID-19 , Influenza A Virus, H7N9 Subtype , Humans , Male , COVID-19/epidemiology , Pandemics , Antiviral Agents/therapeutic use , Oxygen
4.
J Virol ; 97(1): e0143122, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2193450

ABSTRACT

Since 2013, H7N9 avian influenza viruses (AIVs) have caused more than 1,500 human infections and the culling of millions of poultry. Despite large-scale poultry vaccination, H7N9 AIVs continue to circulate among poultry in China and pose a threat to human health. Previously, we isolated and generated four monoclonal antibodies (mAbs) derived from humans naturally infected with H7N9 AIV. Here, we investigated the hemagglutinin (HA) epitopes of H7N9 AIV targeted by these mAbs (L3A-44, K9B-122, L4A-14, and L4B-18) using immune escape studies. Our results revealed four key antigenic epitopes at HA amino acid positions 125, 133, 149, and 217. The mutant H7N9 viruses representing escape mutations containing an alanine-to-threonine substitution at residue 125 (A125T), a glycine-to-glutamic acid substitution at residue 133 (G133E), an asparagine-to-aspartic acid substitution at residue 149 (N149D), or a leucine-to-glutamine substitution at residue 217 (L217Q) showed reduced or completely abolished cross-reactivity with the mAbs, as measured by a hemagglutination inhibition (HI) assay. We further assessed the potential risk of these mutants to humans should they emerge following mAb treatment by measuring the impact of these HA mutations on virus fitness and evasion of host adaptive immunity. Here, we showed that the L4A-14 mAb had broad neutralizing capabilities, and its escape mutant N149D had reduced viral stability and human receptor binding and could be neutralized by both postinfection and antigen-induced sera. Therefore, the L4A-14 mAb could be a therapeutic candidate for H7N9 AIV infection in humans and warrants further investigation for therapeutic applications. IMPORTANCE Avian influenza virus (AIV) H7N9 continues to circulate and evolve in birds, posing a credible threat to humans. Antiviral drugs have proven useful for the treatment of severe influenza infections in humans; however, concerns have been raised as antiviral-resistant mutants have emerged. Monoclonal antibodies (mAbs) have been studied for both prophylactic and therapeutic applications in infectious disease control and have demonstrated great potential. For example, mAb treatment has significantly reduced the risk of people developing severe disease with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition to the protection efficiency, we should also consider the potential risk of the escape mutants generated by mAb treatment to public health by assessing their viral fitness and potential to compromise host adaptive immunity. Considering these parameters, we assessed four human mAbs derived from humans naturally infected with H7N9 AIV and showed that the mAb L4A-14 displayed potential as a therapeutic candidate.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human , Animals , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Epitopes , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/immunology , Influenza, Human/therapy , Immune Evasion/genetics , Mutation
5.
Front Cell Infect Microbiol ; 12: 1100695, 2022.
Article in English | MEDLINE | ID: covidwho-2198727

Subject(s)
COVID-19 , SARS-CoV-2 , Humans
6.
Vaccines (Basel) ; 10(11)2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2112576

ABSTRACT

Influenza A(H7N9) viruses remain as a high pandemic threat. The continued evolution of the A(H7N9) viruses poses major challenges in pandemic preparedness strategies through vaccination. We assessed the breadth of the heterologous neutralizing antibody responses against the 3rd and 5th wave A(H7N9) viruses using the 1st wave vaccine sera from 4 vaccine groups: 1. inactivated vaccine with 2.8 µg hemagglutinin (HA)/dose + AS03A; 2. inactivated vaccine with 5.75 µg HA/dose + AS03A; 3. inactivated vaccine with 11.5 µg HA/dose + MF59; and 4. recombinant virus like particle (VLP) vaccine with 15 µg HA/dose + ISCOMATRIX™. Vaccine group 1 had the highest antibody responses to the vaccine virus and the 3rd/5th wave drifted viruses. Notably, the relative levels of cross-reactivity to the drifted viruses as measured by the antibody GMT ratios to the 5th wave viruses were similar across all 4 vaccine groups. The 1st wave vaccines induced robust responses to the 3rd and Pearl River Delta lineage 5th wave viruses but lower cross-reactivity to the highly pathogenic 5th wave A(H7N9) virus. The population in the United States was largely immunologically naive to the A(H7N9) HA. Seasonal vaccination induced cross-reactive neuraminidase inhibition and binding antibodies to N9, but minimal cross-reactive antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies to A(H7N9).

7.
Int J Infect Dis ; 122: 593-598, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1914481

ABSTRACT

OBJECTIVES: We aimed to compared the clinical features of acute respiratory distress syndrome (ARDS) induced by COVID-19 and H7N9 virus infections. METHODS: Clinical data of 100 patients with COVID-19 and 46 patients with H7N9 were retrospectively analyzed. RESULTS: Elevated inflammatory indices and coagulation disorders were more common in COVID-19-ARDS group than in the H7N9-ARDS group. The median interval from illness onset to ARDS development was shorter in H7N9-ARDS. The PaO2/FiO2 level was lower in H7N9-ARDS, whereas the Sepsis-related Organ Failure Assessment score was higher in COVID-19-ARDS. The proportion of patients with disseminated intravascular coagulation and liver injury in COVID-19-ARDS and H7N9-ARDS was 45.5% versus 3.1% and 28.8% versus 50%, respectively (P <0.05). The mean interval from illness onset to death was shorter in H7N9-ARDS. A total of 59.1% patients with H7N9-ARDS died of refractory hypoxemia compared with 28.9% with COVID-19-ARDS (P = 0.014). Patients with COVID-19-ARDS were more likely to die of septic shock and multiple organ dysfunction compared with H7N9-ARDS (71.2% vs 36.4%, P = 0.005). CONCLUSION: Patients with H7N9 were more susceptible to develop severe ARDS and showed a more acute disease course. COVID-19-ARDS was associated with severe inflammatory response and coagulation dysfunction, whereas liver injury was more common in H7N9-ARDS. The main causes of death between patients with the two diseases were different.


Subject(s)
COVID-19 , Influenza A Virus, H7N9 Subtype , Influenza, Human , Respiratory Distress Syndrome , COVID-19/complications , Humans , Influenza, Human/complications , Respiratory Distress Syndrome/etiology , Retrospective Studies
8.
Shanghai Journal of Preventive Medicine ; 33(1):67-72, 2021.
Article in Chinese | GIM | ID: covidwho-1865682

ABSTRACT

Objective: To compare the response measures and outcomes of SARS-CoV(2003), H1N1 influenza(2009), H7N9 influenza(2013)and COVID-19(2020)in Shanghai and provide scientific evidence for the emergency response of public health emergencies.

9.
J Clin Lab Anal ; 35(12): e24100, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1508785

ABSTRACT

OBJECTIVES: This study aimed to explore clinical indexes for management of severe/critically ill patients with COVID-19, influenza A H7N9, and H1N1 pneumonia by comparing hematological and radiological characteristics. METHODS: Severe/critically ill patients with COVID-19, H7N9, and H1N1 pneumonia were retrospectively enrolled. The demographic data, clinical manifestations, hematological parameters, and radiological characteristics were compared. RESULTS: In this study, 16 cases of COVID-19, 10 cases of H7N9, and 13 cases of H1N1 who met severe/critically ill criteria were included. Compared with COVID-19, H7N9 and H1N1 groups had more chronic diseases (80% and 92.3% vs. 25%, p < 0.05), higher APACHE Ⅱ scores (16.00 ± 8.63 and 15.08 ± 6.24, vs. 5.50 ± 2.58, p < 0.05), higher mortality rates (40% and 46.2% vs. 0%, p < 0.05), significant lymphocytopenia (0.59 ± 0.31 × 109 /L and 0.56 ± 0.35 × 109 /L vs. 0.97 ± 0.33 × 109 /L, p < 0.05), and elevated neutrophil-to-lymphocyte ratio (NLR; 14.67 ± 6.10 and 14.64 ± 10.36 vs. 6.29 ± 3.72, p < 0.05). Compared with the H7N9 group, ground-glass opacity (GGO) on chest CT was common in the COVID-19 group (p = 0.028), while pleural effusion was rare (p = 0.001). CONCLUSIONS: The NLR can be used as a clinical parameter for the predication of risk stratification and outcome in COVID-19 and influenza A pneumonia. Manifestations of pleural effusion or GGO in chest CT may be helpful for the identification of different viral pneumonia.


Subject(s)
COVID-19/blood , COVID-19/diagnostic imaging , Influenza, Human/blood , Influenza, Human/diagnostic imaging , Aged , Aged, 80 and over , Blood Cell Count , COVID-19/etiology , Chronic Disease , Critical Illness , Female , Humans , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza, Human/etiology , Influenza, Human/virology , Male , Middle Aged , Pneumonia, Viral/blood , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , Retrospective Studies , Sex Factors
10.
Vaccines (Basel) ; 8(2)2020 Jun 10.
Article in English | MEDLINE | ID: covidwho-1453292

ABSTRACT

This study describes a double-blind randomized placebo-controlled phase I clinical trial in healthy adults of a new potential pandemic H7N9 live attenuated influenza vaccine (LAIV) based on the human influenza virus of Yangtze River Delta hemagglutinin lineage (ClinicalTrials.gov Identifier: NCT03739229). Two doses of H7N9 LAIV or placebo were administered intranasally to 30 and 10 subjects, respectively. The vaccine was well-tolerated and not associated with increased rates of adverse events or with any serious adverse events. Vaccine virus was detected in nasal swabs during the 6 days after vaccination or revaccination. A lower frequency of shedding was observed after the second vaccination. Twenty-five clinical viral isolates obtained after the first and second doses of vaccine retained the temperature-sensitive and cold-adapted phenotypic characteristics of LAIV. There was no confirmed transmission of the vaccine strain from vaccinees to placebo recipients. After the two H7N9 LAIV doses, an immune response was observed in 96.6% of subjects in at least one of the assays conducted.

11.
Front Cell Infect Microbiol ; 11: 688007, 2021.
Article in English | MEDLINE | ID: covidwho-1389153

ABSTRACT

Environmental transmission of viruses to humans has become an early warning for potential epidemic outbreaks, such as SARS-CoV-2 and influenza virus outbreaks. Recently, an H7N9 virus, A/environment/Hebei/621/2019 (H7N9), was isolated by environmental swabs from a live poultry market in Hebei, China. We found that this isolate could be transmitted by direct contact and aerosol in mammals. More importantly, after 5 passages in mice, the virus acquired two adaptive mutations, PB1-H115Q and B2-E627K, exhibiting increased virulence and aerosol transmissibility. These results suggest that this H7N9 virus might potentially be transmitted between humans through environmental or airborne routes.


Subject(s)
Environmental Exposure , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , China/epidemiology , Humans , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Mice , Poultry/virology
12.
Front Public Health ; 9: 629295, 2021.
Article in English | MEDLINE | ID: covidwho-1376720

ABSTRACT

Background: Since the novel coronavirus disease (COVID-19) has been a worldwide pandemic, the early surveillance and public health emergency disposal are considered crucial to curb this emerging infectious disease. However, studies of COVID-19 on this topic in China are relatively few. Methods: A case-comparison study was conducted using a set of six key time nodes to form a reference framework for evaluating early surveillance and public health emergency disposal between H7N9 avian influenza (2013) in Shanghai and COVID-19 in Wuhan, China. Findings: A report to the local Center for Disease Control and Prevention, China, for the first hospitalized patient was sent after 6 and 20 days for H7N9 avian influenza and COVID-19, respectively. In contrast, the pathogen was identified faster in the case of COVID-19 than in the case of H7N9 avian influenza (12 vs. 31 days). The government response to COVID-19 was 10 days later than that to avian influenza. The entire process of early surveillance and public health emergency disposal lasted 5 days longer in COVID-19 than in H7N9 avian influenza (46 vs. 41 days). Conclusions: The identification of the unknown pathogen improved in China between the outbreaks of avian influenza and COVID-19. The longer emergency disposal period in the case of COVID-19 could be attributed to the government's slower response to the epidemic. Improving public health emergency management could lessen the adverse social effects of emerging infectious diseases and public health crisis in the future.


Subject(s)
COVID-19 , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Case-Control Studies , China/epidemiology , Humans , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Pandemics , Public Health , SARS-CoV-2
13.
Front Med ; 15(4): 507-527, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1188167

ABSTRACT

The avian influenza A (H7N9) virus is a zoonotic virus that is closely associated with live poultry markets. It has caused infections in humans in China since 2013. Five waves of the H7N9 influenza epidemic occurred in China between March 2013 and September 2017. H7N9 with low-pathogenicity dominated in the first four waves, whereas highly pathogenic H7N9 influenza emerged in poultry and spread to humans during the fifth wave, causing wide concern. Specialists and officials from China and other countries responded quickly, controlled the epidemic well thus far, and characterized the virus by using new technologies and surveillance tools that were made possible by their preparedness efforts. Here, we review the characteristics of the H7N9 viruses that were identified while controlling the spread of the disease. It was summarized and discussed from the perspectives of molecular epidemiology, clinical features, virulence and pathogenesis, receptor binding, T-cell responses, monoclonal antibody development, vaccine development, and disease burden. These data provide tools for minimizing the future threat of H7N9 and other emerging and re-emerging viruses, such as SARS-CoV-2.


Subject(s)
COVID-19 , Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , China/epidemiology , Humans , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Poultry , SARS-CoV-2
14.
Biochem Biophys Res Commun ; 545: 145-149, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1061767

ABSTRACT

In March 2013 it was reported by the World Health Organization (WHO) the first cases of human infections with avian influenza virus A (H7N9). From 2013 to December 2019, 1568 cases have been reported with 616 deaths. H7N9 infection has been associated with high morbidity and mortality rates, and vaccination is currently the most effective way to prevent infections and consequently flu-related severe illness. Developing and producing vaccines against pandemic influenza viruses is the main strategy for a response to a possible pandemic. This study aims to present the production of three industrial lots under current Good Manufacturing Practices (cGMP) of the active antigen used to produce the pandemic influenza vaccine candidate against A(H7N9). These batches were characterized and evaluated for quality standards and tested for immunogenicity in mice. The average yield was 173.50 ± 7.88 µg/mL of hemagglutinin and all the preparations met all the required specifications. The formulated H7N9 vaccine is poorly immunogenic and needs to be adjuvanted with an oil in water emulsion adjuvant (IB160) to achieve a best immune response, in a prime and in a boost scheme. These data are important for initial production planning and preparedness in the case of a H7N9 pandemic.


Subject(s)
Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/biosynthesis , Influenza, Human/prevention & control , Pandemics/prevention & control , Animals , Antigens, Viral/biosynthesis , Antigens, Viral/immunology , Drug Compounding/methods , Drug Compounding/statistics & numerical data , Drug Industry/standards , Female , Humans , Influenza Vaccines/immunology , Influenza Vaccines/isolation & purification , Influenza, Human/immunology , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Vaccines, Inactivated/biosynthesis , Vaccines, Inactivated/immunology , Vaccines, Inactivated/isolation & purification
15.
Infect Dis Poverty ; 9(1): 163, 2020 Dec 02.
Article in English | MEDLINE | ID: covidwho-954569

ABSTRACT

BACKGROUND: There is an urgent need to better understand the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for that the coronavirus disease 2019 (COVID-19) continues to cause considerable morbidity and mortality worldwide. This paper was to differentiate COVID-19 from other respiratory infectious diseases such as avian-origin influenza A (H7N9) and influenza A (H1N1) virus infections. METHODS: We included patients who had been hospitalized with laboratory-confirmed infection by SARS-CoV-2 (n = 83), H7N9 (n = 36), H1N1 (n = 44) viruses. Clinical presentation, chest CT features, and progression of patients were compared. We used the Logistic regression model to explore the possible risk factors. RESULTS: Both COVID-19 and H7N9 patients had a longer duration of hospitalization than H1N1 patients (P < 0.01), a higher complication rate, and more severe cases than H1N1 patients. H7N9 patients had higher hospitalization-fatality ratio than COVID-19 patients (P = 0.01). H7N9 patients had similar patterns of lymphopenia, neutrophilia, elevated alanine aminotransferase, C-reactive protein, lactate dehydrogenase, and those seen in H1N1 patients, which were all significantly different from patients with COVID-19 (P < 0.01). Either H7N9 or H1N1 patients had more obvious symptoms, like fever, fatigue, yellow sputum, and myalgia than COVID-19 patients (P < 0.01). The mean duration of viral shedding was 9.5 days for SARS-CoV-2 vs 9.9 days for H7N9 (P = 0.78). For severe cases, the meantime from illness onset to severity was 8.0 days for COVID-19 vs 5.2 days for H7N9 (P < 0.01), the comorbidity of chronic heart disease was more common in the COVID-19 patients than H7N9 (P = 0.02). Multivariate analysis showed that chronic heart disease was a possible risk factor (OR > 1) for COVID-19, compared with H1N1 and H7N9. CONCLUSIONS: The proportion of severe cases were higher for H7N9 and SARS-CoV-2 infections, compared with H1N1. The meantime from illness onset to severity was shorter for H7N9. Chronic heart disease was a possible risk factor for COVID-19.The comparison may provide the rationale for strategies of isolation and treatment of infected patients in the future.


Subject(s)
COVID-19/pathology , COVID-19/virology , Influenza, Human/pathology , Influenza, Human/virology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/mortality , Child , Child, Preschool , Comorbidity , Disease Progression , Female , Hospitalization , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza, Human/diagnosis , Influenza, Human/mortality , Lung/diagnostic imaging , Lung/pathology , Male , Middle Aged , Risk Factors , SARS-CoV-2/pathogenicity , Virus Shedding , Young Adult
16.
Front Immunol ; 11: 559113, 2020.
Article in English | MEDLINE | ID: covidwho-868963

ABSTRACT

As the recent outbreak of SARS-CoV-2 has highlighted, the threat of a pandemic event from zoonotic viruses, such as the deadly influenza A/H7N9 virus subtype, continues to be a major global health concern. H7N9 virus strains appear to exhibit greater disease severity in mammalian hosts compared to natural avian hosts, though the exact mechanisms underlying this are somewhat unclear. Knowledge of the H7N9 host-pathogen interactions have mainly been constrained to natural sporadic human infections. To elucidate the cellular immune mechanisms associated with disease severity and progression, we used a ferret model to closely resemble disease outcomes in humans following influenza virus infection. Intriguingly, we observed variable disease outcomes when ferrets were inoculated with the A/Anhui/1/2013 (H7N9) strain. We observed relatively reduced antigen-presenting cell activation in lymphoid tissues which may be correlative with increased disease severity. Additionally, depletions in CD8+ T cells were not apparent in sick animals. This study provides further insight into the ways that lymphocytes maturate and traffic in response to H7N9 infection in the ferret model.


Subject(s)
Antigen-Presenting Cells/immunology , CD8-Positive T-Lymphocytes/immunology , Host-Pathogen Interactions/immunology , Influenza A Virus, H7N9 Subtype/physiology , Orthomyxoviridae Infections/immunology , Animals , Antigen-Presenting Cells/pathology , Betacoronavirus/immunology , CD8-Positive T-Lymphocytes/pathology , COVID-19 , Coronavirus Infections/immunology , Disease Models, Animal , Ferrets , Humans , Orthomyxoviridae Infections/pathology , Pandemics , Pneumonia, Viral/immunology , SARS-CoV-2
17.
Engineering (Beijing) ; 6(10): 1153-1161, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-849390

ABSTRACT

H7N9 viruses quickly spread between mammalian hosts and carry the risk of human-to-human transmission, as shown by the 2013 outbreak. Acute respiratory distress syndrome (ARDS), lung failure, and acute pneumonia are major lung diseases in H7N9 patients. Transplantation of mesenchymal stem cells (MSCs) is a promising choice for treating virus-induced pneumonia, and was used to treat H7N9-induced ARDS in 2013. The transplant of MSCs into patients with H7N9-induced ARDS was conducted at a single center through an open-label clinical trial. Based on the principles of voluntariness and informed consent, 44 patients with H7N9-induced ARDS were included as a control group, while 17 patients with H7N9-induced ARDS acted as an experimental group with allogeneic menstrual-blood-derived MSCs. It was notable that MSC transplantation significantly lowered the mortality of the experimental group, compared with the control group (17.6% died in the experimental group while 54.5% died in the control group). Furthermore, MSC transplantation did not result in harmful effects in the bodies of four of the patients who were part of the five-year follow-up period. Collectively, these results suggest that MSCs significantly improve the survival rate of H7N9-induced ARDS and provide a theoretical basis for the treatment of H7N9-induced ARDS in both preclinical research and clinical studies. Because H7N9 and the coronavirus disease 2019 (COVID-19) share similar complications (e.g., ARDS and lung failure) and corresponding multi-organ dysfunction, MSC-based therapy could be a possible alternative for treating COVID-19.

18.
BMC Infect Dis ; 20(1): 369, 2020 May 24.
Article in English | MEDLINE | ID: covidwho-343360

ABSTRACT

BACKGROUND: Previous studies have proven that the closure of live poultry markets (LPMs) was an effective intervention to reduce human risk of avian influenza A (H7N9) infection, but evidence is limited on the impact of scale and duration of LPMs closure on the transmission of H7N9. METHOD: Five cities (i.e., Shanghai, Suzhou, Shenzhen, Guangzhou and Hangzhou) with the largest number of H7N9 cases in mainland China from 2013 to 2017 were selected in this study. Data on laboratory-confirmed H7N9 human cases in those five cities were obtained from the Chinese National Influenza Centre. The detailed information of LPMs closure (i.e., area and duration) was obtained from the Ministry of Agriculture. We used a generalized linear model with a Poisson link to estimate the effect of LPMs closure, reported as relative risk reduction (RRR). We used classification and regression trees (CARTs) model to select and quantify the dominant factor of H7N9 infection. RESULTS: All five cities implemented the LPMs closure, and the risk of H7N9 infection decreased significantly after LPMs closure with RRR ranging from 0.80 to 0.93. Respectively, a long-term LPMs closure for 10-13 weeks elicited a sustained and highly significant risk reduction of H7N9 infection (RRR = 0.98). Short-time LPMs closure with 2 weeks in every epidemic did not reduce the risk of H7N9 infection (p > 0.05). Partially closed LPMs in some suburbs contributed only 35% for reduction rate (RRR = 0.35). Shenzhen implemented partial closure for first 3 epidemics (p > 0.05) and all closure in the latest 2 epidemic waves (RRR = 0.64). CONCLUSION: Our findings suggest that LPMs all closure in whole city can be a highly effective measure comparing with partial closure (i.e. only urban closure, suburb and rural remain open). Extend the duration of closure and consider permanently closing the LPMs will help improve the control effect. The effect of LPMs closure seems greater than that of meteorology on H7N9 transmission.


Subject(s)
Epidemics/prevention & control , Influenza A Virus, H7N9 Subtype , Influenza in Birds/epidemiology , Influenza in Birds/transmission , Influenza, Human/epidemiology , Poultry/virology , Animals , China/epidemiology , Cities/epidemiology , Humans , Humidity , Incidence , Influenza in Birds/virology , Influenza, Human/virology , Linear Models , Poisson Distribution , Risk Factors , Temperature , Urban Population
19.
Viruses ; 12(5)2020 05 08.
Article in English | MEDLINE | ID: covidwho-209967

ABSTRACT

In the midst of the ongoing COVID-19 coronavirus pandemic, influenza virus remains a major threat to public health due to its potential to cause epidemics and pandemics with significant human mortality. Cases of H7N9 human infections emerged in eastern China in 2013 and immediately raised pandemic concerns as historically, pandemics were caused by the introduction of new subtypes into immunologically naïve human populations. Highly pathogenic H7N9 cases with severe disease were reported recently, indicating the continuing public health threat and the need for a prophylactic vaccine. Here we review the development of recombinant influenza virus-like particles (VLPs) as vaccines against H7N9 virus. Several approaches to vaccine development are reviewed including the expression of VLPs in mammalian, plant and insect cell expression systems. Although considerable progress has been achieved, including demonstration of safety and immunogenicity of H7N9 VLPs in the human clinical trials, the remaining challenges need to be addressed. These challenges include improvements to the manufacturing processes, as well as enhancements to immunogenicity in order to elicit protective immunity to multiple variants and subtypes of influenza virus.


Subject(s)
Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/immunology , Vaccines, Virus-Like Particle/genetics , Animals , Antigens, Viral/immunology , Clinical Trials as Topic , Epitopes , Histocompatibility Antigens Class II , Humans
20.
Shanghai Journal of Preventive Medicine ; (12): E069-E069, 2020.
Article in Chinese | WPRIM (Western Pacific), WPRIM (Western Pacific) | ID: covidwho-19133

ABSTRACT

[Objective] To analyze and judge the possibility of early control in Shanghai if COVID-19 begins in Shanghai. [Methods] Compare the process of early control of H7N9 avian influenza in Shanghai in 2013 and Wuhan COVID-19 in 2019. The early incidence data of Korean COVID-19 was simulated and analyzed to predict whether the medical resources needed in Shanghai were available. [Results] (1) It would take 22 days from the first case to the government's emergency response in terms of Shanghai. (2) It is estimated that there would be 602-763 patients with cumulative onset and onset after incubation period. (3) At least 500 beds of infectious diseases can be allocated in Shanghai in case of emergency. Through adding beds and resources reallocation in the whole city, patients can be fully admitted and treated. [Conclusion] If COVID-19 epidemic occurs in Shanghai, early control is possible.

SELECTION OF CITATIONS
SEARCH DETAIL